

Unit Three – Optics

Chapter 112 Refraction of Light ACADEMY

Prepared Presented by: Mr. Mohamad Seif

SOLVING

Choose the correct answer.

- 1) Refraction is the bending of a wave disturbance as it passes at an angle from one ____ into another
- a. Area b. Boundary
- c. Glass d. Medium
- 2) When light travels from vacuum into a glass block, its speed:
- a. Decreases
- c. Remains constant

d. None of the above

3) A beam of light passes from the air through a thick piece of glass as shown. Which of the following angles is the angle of refraction?

a. Angle 1

c. Angle 4

b. Angle 2

d. Angle 5

The angle of refraction is the angle between normal and refracted ray then:

4) The speed of light in a piece of glass is 1.5×10^8 m/s. What is the index of refraction of the glass?

a. 2

c. 0.67

- 5) A beam of light passes from air into water. Which of the following statements is true?
- a. The angle of incidence is greater than the angle of refraction in the water.
- b. The angle of incidence is less than the angle of refraction in the water
- c. The angle of incidence is equal to the angle of refraction in the water. \triangle
- d. The frequency of the light decreases

- 6) When light passes at an angle to the normal from one material into another material in which its speed is lower:
- a. It is bent towards the normal to the surface
- b. The ray is not unaffected
- c. It always emerges along the normal to the surface
- d. It is bent away from the normal to the surface

SOLVING

A luminous ray, propagates in air, and hits the surface of separation (air –water) with an angle of incidence i_{air} .

When the incident angle is $i_{air} = 40$, the refracted angle is $i_{water} = 29$.

- 1) Calculate the index of refraction of water.
- 2) Calculate the deviation of the corresponding incident ray in air $i_{air} = 40^{\circ}$.

1) Calculate the index of refraction of water

The ray passes from a medium of less index (air) to a medium of more index (water) then:
The ray refracted towards the normal

Apply Snell's Law:

$$n_{air}sin(i_{air}) = n_{water}sin(i_{water})$$

$$n_{water} = \frac{n_{air}sin(i_{air})}{sin(i_{water})} = \frac{1 \times sin(40)}{sin(29)}$$

Air

Water

$$n_{water} = 1.32$$

2) Calculate the deviation of the corresponding incident ray in air $i_{air} = 40^{\circ}$

Angle of deviation is the difference between the angle of incidence and angle of refraction

$$d = \begin{vmatrix} i_{air} - r_{water} \\ 5e & Matt \\ d = \begin{vmatrix} 40 \\ 29 \end{vmatrix}$$

$$d=11^{\circ}$$

SOLVING

A rectangular medium of index n is in contact with the face AB of a triangular prism ABC of angle $\hat{A} = 90^{\circ}$, where the face AC is in contact with air.

A monochromatic light, is grazing the surface AB. The angle of emergence from face AC is $i' = 60^{\circ}$. Smart Given $n_{prism} = \sqrt{3}$

- 1) Define monochromatic light.
- 2) Give the value of *i*.
- 3)Draw a figure showing the light till it emerges out AC.
- 4) Calculate the angle of incidence at face AC.
- 5) Deduce the angle of refraction on the face AB.
- 6) Calculate the index of refraction of the rectangle.

1. Define monochromatic light.

Monochromatic light: is a light formed of one color having one wavelength.

2. Give the value of i.

The beam of light grazes the surface

AB:

3. Draw a figure showing the light till it emerges out AC.

The ray emerges thorough the prism and arrives at point J.

At point J:

The ray passes from a medium of more index to a medium of less index:

The ray is refracted away from the normal.

4. Calculate the angle of incidence i_1 at face AC. Deduce the angle of refraction r_1 on the face AB.

Applying Snell's law at AC:

$$n_{prism}sin(i_1) = n_{air}sin(i')$$

$$sin(i_1) = \frac{n_{air}sin(i')}{n_{prism}} \underbrace{\frac{1 \times sin(60)}{\sqrt{3}}}_{\sqrt{3}}$$

$$sin(i_1) = 0.5$$

$$i_1 = 30$$

The angles r_1 and $A\hat{J}I$ are alternate angles $A\widehat{J}I + i_1 = 90^{\circ}$ $A\widehat{J}I = 90^{\circ} - i_1$ $A\widehat{J}I = 90^{\circ} - 30^{\circ}$ $A\hat{J}I = 60^{\circ}e$ Smar

The angle of refraction at I is:

$$r_1 = A\hat{J}I = 60^{\circ}$$

5.Calculate the index of refraction of the rectangular medium (n).

Apply Snell's law at face AB:

$$nsin(i) = n_{prism}sin(r_1)$$

$$nsin(90) = \sqrt{3}sin(60)$$

$$n = \frac{\sqrt{3}sin(60)}{sin(90)} \rightarrow DEM$$

$$n = 1.5$$

SOLVING

A light ray SI propagates in air of index of refraction $n_{air} = 1$, falls normally on the surface MN of a prim of index $n_{prism} = 1.5$ as shown in the adjacent figure.

Draw the path of the light ray until it emerges from the prism, showing the necessary explanation and calculation.

On surface MN:

The ray SI is normal, so it completes without any deviation.

$$I\hat{J}N + N\hat{I}J + I\hat{N}J = 180$$
 $I\hat{J}N + 90 + 35 = 180$
 $I\hat{J}N + 125 = 180$
 $I\hat{J}N = 180 - 125$
 $I\hat{J}N = 55$ CADEMY

The incident angle $i_1 = 90 - I\hat{J}N = 90 - 55 \rightarrow i_1 = 35^{\circ}$

Now the ray is in the glass prism and tries to leave it:

The ray passes from the medium of more refractive to the medium of less refractive index, then we compare the limiting angle with the angle of incidence.

The Limiting angle: $n_1 sin(i_l) = n_2 sin(90)$

$$(1.5)sin(i_l) = (1)sin(90)$$

$$(1.5)sin(i_l) = (1)sin(90) = (1)sin(90)$$

$$sin(i_l) = \frac{(1)sin(90)}{1.5} = 0.\overline{6} \implies i_L = 42$$

Compare i_1 and i_L then:

$$i_1 = 35 < i_L = 42$$

The ray refracted away from the

normal.
$$n_1 sin(i_1) = n_2 sin(r_1)$$

$$(1.5)sin(35) = (1)sin(r_1)$$

$$sin(r_1) = \frac{(1.5)sin(35)}{1} = 0.86$$
 EVY

$$r_1 = 59.3$$

SOLVING

The object of this exercise is to study the behavior of a beam of light incident on the surface of separation of two transparent

and homogeneous mediums.

Consider a source S of red light placed in water, sending a beam of light, considered as a luminous ray, on the horizontal surface of separation waterair under an angle of incidence i_1 The adjacent figure represents four rays corresponding to four directions taken by the source S.

- 1) Draw, with justification, the path of the ray SI_0 .
- 2) The ray SI_2 emerges grazing the surface of separation.
- a) What does the angle of incidence 49° thus represent?
- b) Give the value of the corresponding angle of refraction.
- 3) The ray SI_1 crosses from water into air. Why?
- 4) The refracted ray corresponding to SI_1 meets the vertical wall at a point B. determine the location of B.

- 1) Draw, with justification, the path of the ray SI_0 .
- The ray SI_0 falls normal to the surface (water-air) then it completes without any deviation
- 2) The ray SI₂ emerges grazing the surface of separation.
- a) What does the angle of incidence 49° thus represent?
- $i_2 = 49^{\circ}$ represents the limiting angle
- of refraction.
- b) Give the value of the corresponding angle of refraction.

The angle of refraction is $r_2 = 90^{\circ}$

3) The ray SI₁ crosses from water into air. Why?

$$i_1 = 40^{\circ} < i_L = 49^{\circ} (limiting angle)$$

Therefore the ray SI_1 crosses from water into air and refracted away from the normal

4) The refracted ray corresponding to SI_1 meets the vertical wall at a point B. determine the location of B.

See the figure

5) The ray SI₃ is incident on the surface of separation under

an angle of incidence of 60°.

a) Would the ray SI_3 leave water? Justify.

b) Name, then, the phenomenon that this ray undergoes.

c) Draw the path followed by SI₃.

5) The ray SI₃ is incident on the surface of separation under

an angle of incidence of 60°.

a) Would the ray SI_3 leave water? Justify.

The ray will not leaves the water surface, since $i = 60^{\circ} > i_l = 49^{\circ}$

b) Name, then, the phenomenon that this ray undergoes.

Since $i = 60^{\circ} > i_l = 49^{\circ}$, then the ray underdoes total internal reflection

c) Draw the path followed by SI₃.

